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Introduction

During the past two years, we have modeled speech production computationally using artifi-
cial neural networks that learn associations between physiological, kinematic, and acoustic data.
Our aim has been to identify and emulate various stages of the production process as plausibly yet
simplistically as possible. As schematized in Fig. 1, linguistic intentions are realized neurophysio-
logically by combining phoneme-specific motor command sequences and global factors condition-
ing overall performance (e.g., speaking rate, style, speaker mood), which together determine what
muscles are activated and to what extent (Dornay, Uno, Kawato, & Suzuki, 1992). They also af-
fect articulator behavior through adjustment of dynamical parameters of the musculoskeletal sys-
tem. The ensuing articulator kinematics effect changes in vocal tract shape and consequently the
acoustic output when accompanied by appropriately coupled periodic and non periodic sources.
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Fig. 1 Overview of Speech Production. Shading denotes topics of this paper.

Initially, the basic formal and conceptual aspects of the model were adapted from those ap-
plied earlier to the motor control of discrete ann movements ((Kawato, Maeda, Uno, & Suzuki,
1990; Uno, Kawato, & Suzuki, 1989), and were successfully extended to the generation of reiter-
ant speech sentences (Vatikiotis-Bateson, 1988) composed of ba or bo sequences (Hirayama,
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Vatikiotis-Bateson, Kawato, & Jordan, 1992b). Using kinematic data (horizontal and vertical
position) from the lips and jaw, physiological data (EMG) from several relevant muscles, and the
speech acoustics, artificial neural networks learned aspects of the dynamical mapping between
EMG activity and articulator motion (Forward Dynamics) and of the mapping between articulator
motion and the acoustics (Forward Acoustics). After training, the acquired forward model of the
musculoskeletal system was incorporated into a cascade network that generated plausible EMG
signals from the sequence of phoneme-specific targets (via points corresponding to /b/ and /a/ or
fo/) specified in task space (lip aperture), as shown in Fig. 2. This network employed a constant
smoothness constraint on muscle activity, whose setting can be adjusted for differences in speak-
ing rate and style. Via point specification and setting of the smoothness constraint interact in such
a way that estimated (model) trajectories corresponding to fast casual speech will be more smooth
and undershoot via point targets more than those corresponding to slower more precise
productions. The EMG signals generated by the cascade network then drove the forward dynam-
ics model recurrently connected 1o produce continuous estimates of articulator position. Finally,
articulator positions were input to the Forward Acoustics network to generate PARCOR parameters
for speech synthesis. (Hirayama, Vatikiotis-Bateson, Kawato, & Honda, 1992a).
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Fig. 2. Via point assignment (top) and EMG (bottom) generated by the Cascade
neural network for a reiterant speech production of When the sunlight strikes rain-
drops in the air, they act like a prism and form a rainbow, using ba.

Recently, we have applied this modeling scheme to more natural utterances. Compared to
discrete arm movements or reiterant speech, the greater complexity of real speech has proved to be
technically challenging and has led to modifications and extensions of the model at various levels
of the scheme shown in Fig. 1. In this paper, we discuss two areas that are particularly interesting
because, while crucial to our specific effort to mode! natural utterances, they address issues of gen-
eral interest. The first concerns changes in the way the forward mapping between EMG and articu-
lator motion is obtained. We are now using separate networks, whose architecture is being ex-
tended to include boundary constraints such as the shape of the hard palate, to model different ar-
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ticulator components and functional groupings: specifically, the jaw, the jaw+lower lip, and the
jaw+tongue. The second development is automated via point estimation, which makes it possible
to assign phoneme-specific articulatory targets to complex articulator configurations in a principled
way.

Acquiring The Forward Dynamics

Compared to reiterant speech, real speech entails activity of many more articulators and
muscles, particularly those of the tongue. The increased complexity in articulatory patterning and
added data channels makes the computational task substantially more difficult. For example, in a
recent experiment using the magnetometer at Haskins Laboratories (Perkell, Cohen, Svirsky,
Matthies, Garabieta, & Jackson, 1992), we recorded nine muscle EMG channels, horizontal and
vertical position channels for the lips, jaw, tongue tip and tongue blade during production of fairly
natural sentences. In modeling the data, we first tried to use all EMG, 2D position, and corre-
sponding velocity signals for each articulator dimension as input vectors to the training network
(multilayer perceptron). The network task was to compute a unique mapping between the 39 inputs
and 10 acceleration outputs for each time sample of the 8 second training utterances (1600 samples
per utterance).

In theory, even such a large network can be trained successfully, provided the data contain
sufficient information to compute unique solutions between muscle EMG and articulator accelera-
tion. In practice, however, performance of the fully-connected network was poor in three respects:
slow training time, coincidental correlations confusing structure and function (described below),
and failure to converge on a solution due to insufficient data for the tongue. The latter two reasons
in particular led us to split the network training task into sub networks for the jaw alone, the
jaw+lips, and the jaw+tongue.

At present, the sub networks are independent and are not incorporated into a modular archi-
tecture of articulator-specific expert systems whose activity is coordinated by a gating network
(Jacobs, Jordan, Nowlan, & Hinton, 1991). Therefore, the apparent redundancy of the jaw in
each sub network is necessary. Since the analyzed motion of the tongue and the lips includes the
jaw component, the desired mapping between muscle EMG and tongue or lip acceleration must in-
clude the kinematic and physiological contributions of the jaw.

Obviously, size and complexity of these sub networks is much smaller than the fully con-
nected network, so training time is reduced substantially. For example, the smallest network for
the jaw alone has as input only an antagonist muscle pair — ABD and MPT (anterior belly of the
digastric for opening, medial pterygoid for closing) — and position and velocity for horizontal and
vertical motion. Thus, there are only six input vectors for acquiring the sample-step mapping be-
tween muscle EMG and two outputs for horizontal and vertical jaw acceleration. Using continuous
EMG input and the forward dynamics acquired from this network, jaw position was estirnated re-
currently as schematized in Fig. 3 for the sentence, Sam sat on top of the potato cooker and
Tommy cut up a bag of tiny potatoes and popped the beet tips into the pot. EMG input to the re-
current network and the match up between experimental and estimated jaw position are shown in
Fig. 4. Smaller network size is useful not only because it simplifies and speeds up the training
process, but it also makes it easier to see the results of the inevitable adjustments in parameter val-
ues needed to improve the results.
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Fig. 3 Recurrent position estimation network. The network estimates articulator
position from initial values for position and velocity and continuous EMG. For each
EMG sample, the acquired mode! of the forward dynamics calculates an acceleration
value which is then summed and integrated with the preceding values of position and

velocity.

— Network Output
Experimental Data

0.8

MPT

0.4

0.0

0.8

ABD

0.4

0.0

3 4
Time [s}

Wy =
-
-

Fig. 4 Jaw position estimated by the recurrent network is compared with the original
data. EMG signals from ABD (opening) and MPT (closing) were used to train the

network.
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In addition to faster training, use of specific sub networks reduces the confusion of coinci-
dental functional aspects of articulatory patterning and structural components of the musculoskele-
tal dynamics. This problem first appeared in modeling reiterant speech whose reduced phonetic
variability, inherent cyclicity and simplified interarticulator coordination made discrimination be-
tween dynamical and functional aspects of the musculoskeletal system quite difficult (Vatikiotis-
Bateson, Hirayama, & Kawato, 1991). Network training of the forward dynamics for reiterant
speech data associated activity of GGA (genioglossus anterior) muscle, active during tongue
lowering, with jaw opening (see Fig. 2). While tongue lowering may co-occur with jaw opening
during production of /ba/ sequences, GGA does not ‘cause’ the jaw to open. At best, tongue and
jaw are functionally coupled during the vowel portion of these productions. Use of sub networks
that isolate tongue-jaw from lip-jaw articulations cannot prevent such "errors” in mapping from oc-
curring, unless the percepwron is explicitly blocked from learning specific associations between cor-
related physiological and kinematic events; but their incidence can be greatly reduced. Also, com-
parison of common components such as the jaw across sub networks allows functional and struc-
tural components to be distinguished empirically.

A second subnet was used for acquiring the mapping between EMG and acceleration for the
lips. Since lip motion is coupled to jaw motion, jaw EMG was included in addition to the muscles
related to lower lip raising (QO!1 — orbicularis inferior), protrusion (MTL — mentalis), and lower-
ing (DLI — depressor labii inferior). Since no upper lip EMG, such as OOS (orbicularis oris su-
perior), was available for network training, horizontal and vertical position of the upper lip was
treated as an implicit boundary constraint.

Both the jaw and the lip-jaw sub networks gave better estimation results for jaw position than
did the fully-connected network (in which jaw position estimation failed entirely), demonstrating
that inclusion of the tongue data in the fully-connected network degraded overall performance, not
just performance specific to the tongue. The problem of the tongue is not trivial and not one we are
likely to overcome soon. While it is the most important speech articulator, ultimately responsible
for shaping most of the vocal tract, it is also the most difficult to observe and has extremely com-
plex physiology and anatomy (Miyawaki, 1974; Smith & Kier, 1989). Since it is not a rigid body,
its overall shape (hence vocal tract shape) cannot be reliably inferred from observation of only a
few points along its midsagittal surface (Kaburagi & Honda, 1993). By the same token, EMG ac-
tivity was recorded for only a few muscles (genioglossus anterior [GGA] and posterior [GGP],
and hyoglossus [HG]), whose correlation to the recorded tongue positions may not be very high.

However, the success of the other sub networks does lead us to believe that we may be able
to address tongue behavior explicitly and incorporate the modeling piecemeal over the course of a
number of experiments using the same subject. For example, data for more points on the anterior
tongue surface as well as the midsagittal outline of the hard palate are needed to adequately describe
the kinematic behavior of the fore tongue. In order to obtain reasonable EMG-to-kinematic map-
pings for continuous estimation, EMG activity is needed for enough tongue muscles to approxi-
mate agonist-antagonist pairs. Although such pairs are not as easily defined for the tongue as for
the jaw, addition of styloglossus (SG) to the three muscles previously recorded would provide
better antagonist activity for two dimensions of tongue motion: GGA vs. SG for front-lowering <>
back-raising; and GGP vs, HG for front-raising <> back-lowering (Buer, Alfonso, & Honda,
1988; Honda, Kusakawa, & Kakita, 1992; Maeda, 1992).



Assigning Phoneme-Specific Articulatory Targets

The second area in which modeling real speech data has necessitated interesting modification
is in the assignment of phoneme-specific via point targets. Within a phrase, via point assignment
for reiterant speech (see Fig. 2) required only a simple alternation of two target positions evenly
spaced in time (except at phrase boundaries) — one via point for each phoneme. The assignment
task was unnaturally easy because both targets could be specified within a single, highly coupled
articulator group consisting of the lips and jaw. Thus, the via point target could be defined either
in articulator space using the positions of the lips and jaw or in task space as lip aperture.
Speaking rate differences could be controlled by specifying the frequency of a simple oscillator and
by adjusting the constant simoothness constraint in the cascade network, responsible for generating
motor commands (EMG). Each oscillator cycle includes one vowel (V) and the intervocalic string
of consonants (C1.2.3)’ phased around 180 degrees. This results in different degrees of approxima-
tion to the via point target, as illustrated in Fig. 5 for the simple reiterant speech case.

Real speech is both temporally and spatially more complex. Spatially, we have found that
there is a particularly strong linear relation between jaw position and the first two formants (F1,
F2) only for /a/, probably because the vocal tract is shaped as a wide front cavity connected to a
narrow back cavity. Thus, the jaw is a suitable primary articulator for /a/ and, being a rigid struc-
ture, may be measured at a single point. For other vowels, however, tongue shape and position
determine more complex vocal tract shapes. Formant values for mid and high vowels are at best
weakly correlated with jaw position. Therefore, target vocal tract configurations must be derived
from measurement of the tongue. But, unlike the jaw or even lip aperture, there is no one point on
the tongue surface, at least not one that anyone has found, whose position can be used to uniquely
specify different vowels. Furthermore, the correlation among markers placed along the midsagittal
tongue decreases with distance (Kaburagi & Honda, 1993). Thus, for specification of a particular
vowel phoneme, via points may need to be assigned to multiple articulator components, from
whose individually weak correlations specific patterns may emerge computationally.

Assignment Oscillator Via Point Sequence ..b..a.b. a..

Ci23,.. b. b.
Fast V: Normal a' a

Fig. 5. Oscillator assignment of via points for consonant-vowel (CV) sequences and
normalized effects of smoothness on faster rate gestures (lighter trace at right).

Similarly, while stop consonants have theoretically clear places of articulation, they are sus-
ceptible to extensive contextual variability both acoustically and articulatorily, not all of which can
be accounted for by classical theories of coarticulatory undershoot (Lindblom, 1963). Note that,
as described for speaking rate differences, the combination of via points and a smoothness con-
straint on muscle activity in our model of motor command generation should account for neuro-
muscular undershoot quite nicely, while biomechanicul properties contributing to apparent
“articulator sluggishness” are inherent to the acquired model of the forward dynamics. Other con-



sonants, such as fricatives may involve numerous articulator complexes — e.g., the alveolar frica-
tive /s/ depends on tongue tip, blade, jaw, and probably both lips (Faber, 1989).

Temporally, the difficulty with assigning phoneme-specific targets is well-known, and has
led many people to abandon hope of finding them in the articulatory stream in anything like the
beads-on-a-string representation 10 which we still adhere (cf. (Browman & Goldstein, 1986;
Browman & Goldstein, 1990)). That is, the timing of phoneme-specific articulatory events may
violate the serial order of phonemes in the string.
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Fig. 6. Via point assignment by minimum jerk (MJ)estimation. Step 1: Minimum jerk
is estimated for phrase or sentence between known start (Vs) and end (V1) points (i.e.,
velocity and acceleration are zero). Step 2: Via point (V1) is assigned to data point at
maximum distance from MJ trajectory, if summed error threshold (S) for all trajectories
(jaw + tongue tip+tongue blade + lower lip) is reached and if the error threshold for the
specific articulator (e.g., Ejaw) is reached. Step 3: a new MJ trajectory is calculated
through Vs, VI, and Vf. Step 4: the next via point (V2) is assigned by repeating Step
2. Steps 3-4 are repeated until S cannot be reached.

The problem therefore is to find a principled means for assigning via point targets to complex
sound sequences in which phoneme-specific articulatory or task correlates are likely to be obscured




due to coarticulation and other allophonic processes. Furthermore, since we lack firm a priori
knowledge of these correlates, via point assignment should be empirical and automatic. To ad-
dress this, we have adapted the via point assignment scheme currently being used for automatic
character recognition based on the dynamics of cursive handwriting (Wada, Koike, & Kawato,
1993). While the handwriting scheme integrates via point estimation with computation of the in-
verse and forward dynamics, the current scheme entails only calculating minimum jerk trajectories.
As outlined in Fig. 6, minimum jerk trajectories are initially calculated between rest positions (i.e.,
where tangential velocity and acceleration are zero) at the beginning and end of each phrase of the
utterance. Via points are then assigned to articulatory trajectories by successively applying the pro-
cedure shown in the figure. The number of via points assigned to a given utterance is controlled
by setting a limit on the cumulative error between estimated and real rajectories.

Sam sat on top of the potato cooker
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Fig. 7. Temporal acoustics and vertical positions for tongue blade (TBY), tongue tip

(TTY), jaw (JY), and lower lip (LLY) are shown with overlaid via point trajectories.

Vertical lines correspond to acoustic segment centers; thick dots denote via points.

Speaking rate was normal.

Wada has experimented with various forms of the procedure in order to find the best fit for
the data with the number of via points per articulator most closely matching the number of
phonemes in the utterance. A one-one phoneme-to-via point mapping would be desirable for his-
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torical reasons, i.e., the notion of one primary target (acoustic or articulatory) per phoneme, and
might allow us to posit one abstract motor command per phoneme. However, despite the concep-
tual and computational advantages of such an isomorphism, it is unlikely that the model compo-
nents responsible for converting motor commands to muscle activity and subsequent articulator
movements can cope with the range of coarticulatory and coproduction effects induced by contex-
tual variability. Also, there is no reason to insist that "targets” be articulatory entities rather than
acoustic (as commonly believed) or some higher-level equivocation of the two entities (suggested
by Kiyoshi Honda).

As can be seen in Fig. 7, the number of via points required for adequate trajectory estimation
is about the same as the number of acoustically derived segment labels. Notice that via points are
not always assigned to each articulator at a given point in time. This situation arises when the error
threshold for an articulator is not reached. Also, note the tendency for via points to be placed at
peaks and valleys, similar to our original oscillator assignment scheme used for reiterant speech
and specified previously in coupled oscillator models of handwriting (Hollerbach, 1981).
Furthermore, when extra points are assigned, they tend to fall near the midpoint of the trajectory.
This result corroborates Rumelhart's intuition (1993) that trajectory midpoints are necessary for
handwriting recognition, but is not based on any a priori target specification. We assume therefore
that multiple via points may be required for adequately generalized specification across the range
phoneme transitions, and that template extraction will be necessary. To this end, data for subsets
of English and Japanese diphones are being collected for tongue, lip, and jaw kinematics using real
speech with which we hope to refine and verify the phoneme-specific via point estimation scheme
outlined here.
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Fig. 8. Articulator trajectories and via point assignments produced at the faster
speaking rate for the phrase shown in Fig. 7.

It has been observed for reiterant speech (Vatikiotis-Bateson & Kelso, 1993) that the kine-
matics of lip and jaw better fit the constraints of 4 simple second-order system such as a linear
mass-spring when produced at faster speaking rates. In real speech, fast, casual productions are
marked by increased coarticulation resulting in loss of phoneme-specific distinctions both kinemat-



ically and acoustically. This is born out here as well. In Fig. 8, via point assignments using the
same error threshold are shown for the same uiterance phrase produced at the faster speaking rate.
Comparing the trajectories in Figs. 7 and 8, we see that they are quite similar but fewer points tend
to be assigned at the faster rate. Presumably, phoneme-specific templates consisting of at least
one, but probably no more than three, via points per primary articulator can be derived and the dif-
ferences observed here between the two rates can be ascribed to rate-specific settings of the
smoothness constraint (e.g., minimum change of EMG) at the motor command generation stage

(Figs. 1, 5).

Summary

We have described two areas in which our modeling of speech production has progressed.
Addressing the problem of determining the forward dynamics of the system in terms of separate
articulatory structures has improved our ability to evaluate the quality of our approach and the data
needed. Itis clear that Hirayama's computational approach is adequate for modeling the lips and
jaw, where adequate muscle and kinematic data have been acquired. It is equally clear that the
model fails for the tongue and that we need to ascertain whether this is due to inadequate data, as
we hope, inadequate modeling, or some combination of the two. At another level, we have shown
that lip, jaw, and tongue position trajectories can be recovered by estimating via points, roughly
equivalent in number and distribution to the phoneme string. Furthermore, the effect of speaking
rate differepces on the estimation results is small and in the direction we would predict for in-
creased smoothness of faster productions. Finally, we infer from the success of via point estima-
tion for the kinematics of the tongue tip and blade that what is most needed for better forward
modeling of the tongue is higher quality EMG from a wider variety of tongue muscles.
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