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MODELLING THE AIR FLOW IN THE GLOTTIS

Jan Gauffin® and Johan Liljencrants*

The inaccessibility of the laryngeal system does not allow
direct in vivo measurements and aerodynamic theories are not
accurate enough to let us calculate the aerodynamic forces for
arbitrary vocal fold shapes. Therefore we have to rely on
empirical measurements using models, mechanical facsimiles or
computational.

There has been a few attempts to derive formulas for the air
flow through the glottis by using static models of the larynx. The
first to make such measurements in a model was probably Wegel in
1930. He derived an empirical formula for the air resistance of
the glottis. Later van den Berg, Zantema, and Doornenbal (1957)
performed measurements of the pressure within the glottis and the
glottal resistance. They used a static model designed from moulds
made from a human larynx. The glottis of their model was
constructed to form a rectangular duct. The only variable that was
systematically varied was the duct diameter. It was controlled by
placing closing strips of different size between the two model
halves.

The concept of van den Berg’s theory of vocal fold vibration is
that the air pressure in the glottis can be negative compared to
the pressure immediately above and below the glottis. This
negative pressure was supposed to be caused by the so-called
"Bernoulli effect”" created by the acceleration of the air in the
narrow glottis. This idea was probably first applied to the
glottis by Tondorf, already in 1925.

Ishizaka and Matsudaira (1972), made a more theoretical
analysis and suggested two formulas for the glottal resistance,
one for turbulent flow and one for laminar flow. With turbulent
they meant the possibility of a vena contracta (a contraction of
the flow) at the glottal entry. Their turbulent equation was
similar to van den Berg’s equation but with a different estimate
of the recovery of kinetic energy at the glottal exit.

All this pioneering work on glottal aerodynamics has been
restricted to uniform glottal ducts although already in his first
article van den Berg pointed out the importance of the phase
difference between the vibrations of the upper and lower part of
the vocal folds.

In more recent model experiments, performed by Sherer et al
(1980, 1981) and Binh and Gauffin (1983), both diverging and
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converging glottal ducts have been used. The reasons why so few
experiments on the aerodynamics of the glottis have been performed
are easy to understand. First, it is difficult to determine the
exact dimensions and shapes of the folds and, second, the small
physical dimensions pose extreme difficulties to make reliable
measurements of the flow pattern and the pressure distribution
within an unscaled mechanical model. In order to determine the
pressure on the surface of the vocal folds, small holes have to be
drilled in the model. The diameter of these holes can hardly be
much smaller than 0.5 mm, which is not small compared to the
glottal width for a narrow glottis. It is also difficult to make
the openings of the holes smooth and regular, which will influence
the measurements. These practical difficulties probably have
discouraged many experimenters.

In order to circumvent this a five times scaled up model was
used in the above mentioned experiments. Scaling is an accepted
method in aerodynamics but it has the disadvantage that pressures
are reduced by the square of the scale up factor. This implies
that pressures of a few mm water column have to be measured with
good accuracy in a five times scaled up model.

PRESENT THEORIES

Van den Berg et al, (1957) gave the following expression for
the pressure drop, Py, acrossg the larynx:

Py = 1.37P + 12TgpV/W2 - 0.5Py
where

Py = U2/2A2 is the Bernoulli pressure at entry to the glottal
duct with uniform velocity distribution across the area A.

= glottal area, cm?

glottal thickness (vertical length), cm
volume velocity, cm3/s

air velocity in the glottal duct, cm/s
glottal width, cm

air density, 0.00119 g/cm2

= kinematic viscosity of air, 0.15 cm?/s

0o 24y
]

The first term on the right hand side of the equation
represents the pressure drop from the trachea to the glottis
entry. The factor 1.37 was motivated by the pressure measured at
the glottis entry. In the idealized case this pressure drop should
be equal to the kinetic energy of the flow in the glottis. The
deviation from this ideal case was explained to depend on
turbulent losses at entry and uneven distribution of the velocity
across the glottis width. The second term represents the estimated
pressure drop along the glottal rectangular duct. This term is the
Poiseuille expression for laminar flow between parallel plates,



and accounts for the viscous losses within the glottis. The third
term, which is negative, represents the recovery of kinetic energy
when the air expands at glottal exit.

Ishizaka and Matsudaira (1972) proposed two expressions for the
translaryngeal pressure drop: the laminar equation

3 TP Tp
Pq = (1 - 2n(l-n) + 2.2 \[__ + 20" _ )Py
Vw2 w2

and the turbulent equation
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Pd = 1.37Pk + 12 - 2n(1—n)Pk

where n = glottal area/pharyngeal area

Ishizaka and Matsudaira used the term "turbulent" to mean that
there is a "vena contracta" at the entrance.

The value 1.37 of the entry loss coefficient given by wvan den
Berg et al 1is accepted by Ishizaka and Matsudaira for the
"turbulent" formula, but the exit loss coefficient of -0.5 was
modified. In the "laminar" equation the entry 1losses and the
losgses in the duct were reformulated. The first term to the right
is the ideal pressure drop. The second term is assumed to be the
hydrodynamic pressure development due to momentum exchange and
wall shear stress, from the entrance to the exit of the glottis.
The recovery factor after glottal exit is the same as in the
turbulent equation. In practice these two formulas give rather
similar results.

In order to model glottal shapes that are not rectangular,
Ishizaka and Matsudaira (1972) suggested that the non-rectangular
shape could be approximated by abutting rectangular ducts having
different diameters. One example of this is the so called "two-
mass" model.

The formulas proposed by Ishizaka and Matsudaira represent the
present state of the theories of the aerodynamics of the larynx.
The formulas are based on one-dimensional flow theory in an effort
to match experimental data. These formulas have been extensively
used in reporting experiments with models of the vocal folds.

Several static model experiments have been performed by
different authors in order to validate the formulas. A relatively
good match for the flow resistance was generally found for uniform
glottal ducts but variations occurred depending on vocal fold
shapes and glottal width. However, the pressure distribution on
the vocal folds cannot be accurately described by the proposed
formulas based on one-dimensional flow theory.
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DIFFERENT FLOW PATTERNS IN THE GLOTTIS

In Fig. 1, cross sections of four different vocal fold
configurations are shown with indication of the flow pattern. The
shapes of the vocal folds are a little extreme but they are good
for illustrating different flow patterns that can occur in the
glottis. In Fig. 2 the pressure drop as a function of the volume
flow is shown, using the same minimum area for all models. The
data are normalized to the ideal case with even distribution of
velocity over the glottis area and no friction, that is, they show
P4/Px. The measurements were made with the glottis models coupled
to a vocal tract model consisting of a 17 cm long tube with a
diameter of 1.8 cm. All data remained the same if this tube was
removed, except for the divergent model. For this glottal shape
the resistance was 4% higher without the vocal tract tube, because
the tube had a stabilizing effect on the jet that would otherwise
oscillate.

For the converging glottis in Fig. la, the equivalent area is
the area of the laminar jet above the glottis, which in this case
is 5% smaller than the actual area. The area of the jet is a
function of the angle of the convergence (and glottal diameter).
In Fig. 1b, where the glottis is divergent, the angle of
convergence can be considered to be 90 degrees. The abrupt entry
prevents the air from attaching to the walls of the expanding
glottis. If the divergence angle is small, as in this case, the
air- jet will oscillate from one side of the glottis to the other,
For the parallel glottis in Fig. 1lc the flow separates at the
entry but reattaches before glottal exit. Compared to the
converging model the friction term makes the resistance higher for
low velocities but lower for high velocities because then
reattachment of the flow makes the equivalent area bigger. Fig 1d
represents a streamlined case. The smooth entry makes it possible
for the flow to partly follow the walls in the expanding portion
of the glottis, and thus an improved pressure recovery makes the
equivalent area greater than the minimum area. Since the glottis
is short and the particle velocity high, pressure recovery in the
glottis is limited and we can not expect a lower flow resistance
than about 0.8 times the ideal case.

CONVECTIVE ACCELERATION IN THE GLOTTIS

It is clear that a single formula cannot model all these
different types of flow. Two-dimensional flow theory is needed but
there is no established method for designing the flow lines. An
additional problem is that flow separation and unstable flow are
difficult to treat mathematically. Separation is caused by
convective acceleration. In acoustics it is customary to neglect
the convective acceleration (centrifugal force) term in order to
linearize the equations. In the glottis, on the other hand, the
effect of convective acceleration is important because of the
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Fig. 1. Outline shapes of four different models of the glottal
passage, all with the same minimum area. The pattern of the upward
going flow is indicated.
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Fig. 2. Measured pressure-flow relationship in the models of
Fig.1l. The ordinate represents the relative deviation from the

Bernoulli pressure, assuming uniform distribution of velocity
across the minimum glottal area.
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small size of the glottis and the high particle velocity, this can
easily reach 50 m/s.

The effect of the convective acceleration can be estimated by
making some simplified assumptions about the flow pattern., A
streamlined case is illustrated in Fig. 3. For our calculation we
assume that the streamlines are evenly distributed across the
glottal width witch implies that the velocity across the glottal
width also is evenly distributed. The radius of curvature of the
vocal folds at the narrowest part of the glottis is r,, and the
radius of the flow lines is assumed to increase to infinity for
the flow along the mid line. The radius is given by r = r, d/x,
where x is the distance from the mid line and d = W/2 is the half-
width of the glottis. With these simplifying assumptions about the
flow pattern, which may be valid for a glottal width up to about
two times r,, the pressure difference between the mid line of the
flow and the surface of the vocal folds can be estimated.

The centrifugal force per unit volume is given by ovV2/r for
radius r, and this can be integrated to give the pressure
difference P, due to curvature of the lines, see Fig. 3:
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Fig. 3. A hypothetical
glottal shape with
approximation of the flow
pattern for estimation of
the effect of convective
acceleration.

Neglecting friction and
recovery terms the pressure
drop P across the glottis
can be written

R77777777

P =k 9v2/2

y
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where k is a constant that
is close to unity.
Combining these equations,
we can express P, as a
function of P as follows:

w
Pe = P.
2kro ~

It thus seems that the convective acceleration can cause
pressure differences of the same order of magnitude as the
pressure drop across the glottis.

This finding has several implications. First, the original
assumption of an even distribution of velocity across the glottal
width appears to be invalid, but is wunimportant for our
approximate calculation. The velocity must be lowest at the mid



line and increase towards the surfaces of the vocal folds. This is
quite contrary to common explanation of the entry loss coefficient
as caused by a contraction of the flow to the center line. The
higher pressure in the middle of the flow is also a prerequisite
for the flow to be able to follow the expansion of the glottal
duct.

We can also argue that the flow pattern will be relatively
independent of the pressure across the glottis as long as friction
losses can be neglected. The velocity profile will instead vary
with glottal width and vocal fold shape. In model experiments
(Sherer et al, 1983, Binh et al, 1983) it has also been found that
the pressure measured at glottal entry increases with glottal
width in a way similar to that expected from the above
calculation.

Another inference is that the entry loss coefficient has
probably been overestimated in many model experiments. This is
because it is common to associate the entry loss coefficient with
the pressure drop from the tracheal part of the model to the
pressure measured at glottal entry. This in turn may have led to
an over-estimation of the pressure recovery above the glottis,
which may explain the high recovery term in the formula of van den
Berg et al. In the models of Fig. 1, the exit recovery was too low
to be measured, except for the diverging glottis with an
oscillating jet. According to the turbulent formula by Ishizaka
and Matsudaira the pressure recovery should amount to 5%. In the
present experiment, the exit recovery was measured as the
difference between the pressure versus flow with and without the
vocal tract tube. Usually the pressure recovery is measured as the
difference between the pressure at glottis exit and the pressure
somewhere above the glottis, which gives a different definition of
the recovery term.

COMPUTATIONAL FLOW MODELS

The discussion above reveals our lack of knowledge about
fundamental mechanisms in laryngeal aerodynamics and it shows the
need for better tools in modelling voice generation. We have here
demonstrated how simplified wvocal fold shapes and geometrical
design of flow 1lines can be used. A perhaps more promising
approach may be the use of cellular automata to model the air flow
(Frisch et al, 1986). We have made a preliminary attempt to do so
by using a two-dimensional triangular lattice gas model with
hexagonal symmetry. This model is discrete in space and time. The
"Boolean molecules”" move from one node in the lattice to the next
for each unit of time. The "molecules" collide under certain
rules, so designed that particle number and momentum are
conserved. By averaging the velocities of many particles in a
given region we obtain a continuum description in terms of an
averaged flow velocity as function of time.



For . o= s b

! - ~ S 1

§ e e \\.i’.\lgt;m}gi. B i Y I T 4
S T — .._-.__\.\\ -}\}~\.._—,:——v:; e e e e SUL R G A A ’-. 1

VA T S e Ay,
- s -‘--"-\’_‘—-.

’c L — Lz Lo .

i ¢ e e = — ity S =

P e e e W ¥ T e P S . tee &l

- -z
J - & &7 4 s W [ e i~ O N
it T B R o I it SN
. \ R o
. - e e e S Py \'\ ——. - & ee e e e e, s,
- - . e, e -
o SN -
A C e e e e e e ee
- 14N AN
C e e e i « 4 & e e e o e =
——r o — A « e 4 e a p = e a
!I. P Y “ & % e o~ e s e o~ a
o e e~ LR S

)
- P e PTG e i, o -, - o ., ~ . .
| N Nt oo g et Ay e i e amat e SN e e N Mo

R

J‘ * 3 — g - A - . N , N N R .. -
i J 5 A+ m e A s et P st e 7 = et i s e e L e P N Ee et s

Fig. 4. Flow patterns in a two dimensional lattice-gas model of
a constriction at different instances in time after the flow has
been applied to the left. The curves at the bottom show the
pressure at the entry (upper curve) and at the exit (lower curve)
as function of time.



An example of modelling the flow through a constriction in a
tube is shown in Fig. 4. The flow is applied from the left at time
T=0 and the figure shows, from top to bottom, the flow patterns at
sample times 115 and 3600. The direction of the flow is indicated
by the lines extending from each point and the average velocity is
represented by the length of the lines. In this case the scale of
the lattice is large in order to minimize memory requirement and
computing time. This results in an unrealistically high viscosity,
because this is a function of molecule mean free path and thus the
lattice mesh size.

Boundary conditions are usually easy to implement in lattice
gas models. At the hard walls of the model we assume that the
"molecules" behave as if they collide with a "molecule" moving in
opposite direction. At entry the flow is applied by randomly
introducing a certain number of "molecules" per sample time and at
exit the mean pressure over time is kept constant by removing
sufficient number of "molecules". At time T=0 the "molecules" have
random directions and zero mean velocity.

The example shown in Fig. 4 is quite intriguing, but there are
many uncertainties on the implementation of the model. Although
simple at the cellular level, the system is very complex on the
macroscopic level and the theoretical connection between these two
levels are not yet fully worked out. There is at present a great
interest in this new field of 1lattice gas modelling and the
theories will probably be worked out in the next few years.

In another computational experiment we have divided the fluid
into 'macro-molecules’, parcels with equal contents of matter that
still are small compared to the fixed structures bounding the
flow, but very large compared to real molecules. In the computer
each parcel is represented by a record of its position
coordinates, its velocity components in the coordinate directions,
its pressure, and finally a list of pointers to which molecules
are its closest neighbours. These macro-molecules are left to
interact and produce a time history of the flow. The difference
from the hexagonanal 1lattice model is now, that movements and
forces are considered as continuous. Fig. 5 shows two-dimensional
pressure distributions obtained from this by averaging data from
molecules passing areag in a stationary grid.

DYNAMIC ASPECTS

We must Jjustify the relevance of using results from static
models when we want to study the vibrating vocal folds, which is a
dynamic system. It is of considerable importance to be able to
calculate volume velocity flow under dynamic conditions if we want
to understand the mechanism of voice production. In vivo
measurements (Kitzing & Loéfgvist, 1975) as well as theoretical
calculations (Fant, 1982) have shown that the pressure variation
over the glottis during a vibratory cycle can reach the same order



Fig. 5 Contours of equal pressure obtained from a computer
simulation of two-dimensional flow from left to right in a
divergent and a convergent passage.



of magnitude as the subglottic pressure. These pressure variations
are caused by the sub- and supra-glottal resonances, especially
the resonance of the first formant. The question is then if we can
use the flow resistance of our static models as the instantaneous
value in a dynamic simulation. A comprehensive answer to this
question has not been given but we can point at some facts to
consgider,

First, we can estimate the air displaced by the moving folds.
If we assume a chest voice at 100 Hz with a triangular area
function, a peak area of 0.4 cm2, opening and closing phases of
equal length of 2.5 ms and a thickness of the folds of 2 mm, all
qulte realistic wvalues, the displacement flow will be about 32
cm?/s. At the same time the peak flow may be of the order of 600
cm“/s. For higher fundamental frequencies the velocity of area
change is proportional to the frequency but both the peak area and
the glottal thickness will be smaller. The displacement flow
should consequently not —change much with the fundamental
frequency. The displacement flow is, therefore, rather small
compared to the total flow except in the beginning of the opening
phase and close to the closure.

Second, the particle velocity of the air in the glottis has to
be high so that the pressure drop across the glottis is
approximately constant during the passage. Neglecting any entry
coefficient the particle velocity is approximately:

v =1.28 * 103\p

V particle velocity in cm/s
P pressure drop in cm water

At a subglottic pressure of 9 cm water the particle velocity
will then be 38 mm/ms in the narrowest part of the glottis. The
flow in the glottal duct is mainly determined by the part that has
a width of 1less than two times the minimum area. We can,
therefore, assume that the mean particle velocity is 0.8 times the
above value and the effective glottal length to 5 mm including the
extension of the laminar jet at glottal exit. It then takes the
air particle 0.2 ms to pass the glottis. From measurements of the
pressure drop over the glottis during phonation (Kitzing and
Lévqgvist, 1975) we can estimate the maximum speed of pressure
change to be about the subglottic pressure per ms. In the present
example the pressure may change about 20% during the time it takes
an air particle to pass through the glottis. This seems to be a
reasonably slow change in the pressure so that the flow pattern
will be the same in the dynamic case as in the static case for the
same pressure drop.



CONCLUSIONS

Present aerodynamic theories of the larynx are based on one-
dimensional flow theories and empirical data. Using the formula by
Ishizaka & Matsudaira the pressure drop across the glottis can be
calculated with an accuracy which in most cases 1is within 20%.
However, the one-dimensional flow theory is not adegquate when
modeling vocal fold vibrations. Here a new approach using the two
dimensional flow theory is needed.
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